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The extensive property of a macrovariable is proved for a quantal system 
whose Hamiltonian depends on time and for a stochastic system whose 
temporal evolution operator depends on time. These generalized situations 
are concerned with bulk-contact open systems. The extensive property, 
fluctuation, and nonlinear relaxation are investigated explicitly by cal- 
culating rigorously generating functions in exactly soluble models such as 
the linear stochastic model and linear X Y  model. The relation between the 
nonlinear critical slowing down and linear critical slowing down is also 
discussed. 

KEY W O R D S  : Nonlinear relaxation and fluctuation ; extensive property of 
macrovariable ; bulk-contact open system ; generating function ; stochastic 
model ;  XY model ;  exact solut ion;  critical s lowing d o w n ;  existence of 
thermodynamic limit. 

1 .  I N T R O D U C T I O N  

Recently van K a m p e n  (1) and K u b o  et al. (2-4) developed asymptotic  evaluat ion 
methods for investigating the f luctuation and  relaxation of a macrovariable.  
In  particular,  K u b o  (2-4) proposed the extensivity Ansa tz  that  the dis t r ibut ion 
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function of P(X, t) of an extensive macrovariable X at time t has the asymp- 
totic form 

P(x ,  t) = c exp[f~(x, t)] (1) 

for a large system size f~, with x = X/fL This is a generalization of the 
concept of the extensive property of equilibrium statistical thermodynamics 
to nonequilibrium problems and it has been found to be very useful in dis- 
cussing fluctuation and relaxation of a macrovariable. In Refs. 5-8 Kubo's 
extensivity Ansatz has been proven under general conditions. That is, the 
extensivity Ansatz has been proven in Ref. 6 (hereafter referred to as I) to 
hold in microscopic stochastic systems and quantum mechanical systems, 
under the conditions that the initial distribution Oo has the form 

po = Co exp jr ,g,~i) = f o~r dr (2) 

and that the relevant macrovariable X and the Hamiltonian o~ are sums of 
the forms 

X = f X(r) dr and ~ = f dC~(r)dr (3) 

respectively, where the local operators ~(~(r), X(r), and ~rf(r) are bounded 
in the sense of certain canonical averages. ~6) In I, the Hamiltonian of a 
quantal system has been assumed, for simplicity, to change suddenly only at 
the initial time and the temporal evolution operator P of a stochastic system 
has been assumed to be time independent. One of our purposes in this 
paper is to extend the proof of I to more general cases in which the Hamil- 
tonian ~ and temporal evolution operator r' depend on time t. Another 
purpose is to give some examples in which the extensive property can be 
shown explicitly by calculating exactly the generating functions of the relevant 
macrovariables introduced in I. In Ref. 7 (hereafter referred to as II) we have 
proved the extensivity of a Markovian macrovariable on the basis of the 
master equation, by the use of the mean value theorem in differential calculus, 
and obtained the following asymptotic equation for the generating function: 

0 < ) 8-~ 4(1, t) + 3f' ~-~, --h, t --- 0 (4) 

where the master equation is written in the form 

( ~ ) ~ P(x ,  t) + ~ x, ~ ~x'  t P(x ,  t) = 0 (5) 
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with e = 1/f~, and the generating function ~F(A, t) takes the form 

t) =- f P(X, t)e ax dX ~- C exp[f~b(,~, t)] (6) W(h, 

By the help of the above asymptotic equation (4) of the generating function, 
the expressions (1-~) of temporal evolution of the most probable path y(t), 
variance or(t), and other fluctuations around y(t) have been rederived in II: 

~(t) = cl(y(t), t), 6(t) = 2cl'(y(t), t)cr(t) + c2(y(t), t) (7) 

where e,(x, t) is the nth moment of  the intensive transition probability defined 
through 

JC'(x, p, t) = 
(_1).-1 

=1 n! c,(x, t)p" (8) 

We have also discussed in II how the system approaches the equilibrium state 
in the above framework of the asymptotic evaluation of the distribution 
function. 

In Section 2, the extensivity Ansatz is proved for a quantal system de- 
scribed by the time-dependent Hamiltonian ~gC'(t) under conditions similar to 
those in I. In Section 3, the extensivity Ansatz is proved for a stochastic 
system with a time-dependent temporal evolution operator P(t), under the 
condition that the system is "normal,"  as in I. Some exactly soluble examples 
are given in appendices. 

2. EXTENSIVE P R O P E R T Y  IN Q U A N T A L  S Y S T E M S  

As in I and II, it is convenient to make use of a generating function 
defined by 

fTr[exp(IX)]p(t) (quantal) 

~F(;~, t) = ~co~r. [exp(;~X)]P(t) (stochastic or classical) (9) 

where p(t) and P(t) denote the density matrix of a quantal system and the 
probability distribution function of a stochastic (or classical) system, re- 
spectively. If the generating function is proved to have the extensive property, 
i.e., ~F(A, t) = Ca exp[f2~b(;~, t)] for large f2, then the distribution function 
P(X, t) of a macrovariable X and the reduced density matrix p(X, t), which 
are, respectively, defined by c6) 

P(X, t) = ~ a(X - JOP(t), p(X, t) = Tr 8(X - X)p(t) (10) 

are shown c*) to take the following asymptotic forms (i.e., extensive properties) 

P(X, t) or p(X, t) = C exp[f~r t)] (11) 
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by the inverse transformation 

1 f c + ~  P(x ,  t) or p(x, r = ggi jo_,~ e-~X'I'(a' t) da (12) 

The function ~(x, t) is given by the relation 

if(x, t) = ~b(Ao, t) - AoX; 0~b(ho, t)/0Ao = x (13) 

Now we assume (2) and (3) with a time-dependent local Hamiltonian 
~g(r, t). Then we can prove the following theorem. 

Theorem 1. If  the local operators X(r), ~m(r) ,  and ~ ( r ,  t) are bounded 
in averages defined later, then we obtain 

lira f2 -1 log W(A, t) = lim ~b,(A, t) = ~b(a, t) (uniformly convergent) (14) 
~--+ oo ~ . -*  o0 

for lal ~ A (fixed) and finite t. Therefore, W(A, t) has the extensive property 
and consequently so does p(X, t). 

In order to prove Theorem 1, we consider systems of increasing size L,  
(say, L~ = 2"a, where n is a large integer and f2, = L,a), as in I. (See Fig. 1.) 
Correspondingly, we define ~b,()t, t) by 

r t) = ~;1 log ~. . (a,  t) 05) 

where tFa,(A, t) is the generating function for the system size f2,. As in I, 
our main task is to prove that this series of functions {~b,(A, t)} satisfies 
Cauchy's condition on convergence. For this purpose, we divide the volume 
f2, into 2 a subdomains f2,_ ~ and provide each domain with an inside margin 
of width b (the range of local operators) as shown in Fig. 2. Each margined 
domain of E2~_1 is denoted by (2~_1 (i.e., the volume (2, = L~a; L~ = L~ - 
2b). Thus, we redefine tFa,(A, t) by (9) with X, d/d m, and 3of(t) defined by 
integrals (2) and (3) over the domain (~,. For the precise definition of local 

f2 § 

f~rL-/ 
+ s  - _ _ 

Fig. 1. A series of systems with increasing size L, and an associated series of ~b~. 
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Fig. 2. Domains ~ with inside margins of width b; f~ is the shaded region. 

operators, see I. Let us call the boundary region shaded in Fig. 2 domain f~2 
and the rest we call domain f2~. That is, ~ ,  = f~  + f22. Then, we separate 
each of the operators X, ~g~o, and ~ ( t )  into two parts: 

~ o  = ~ )  + ~o~), ~ ( t )  = ~r + ~ ( t )  (16) X = X l  + X2, 

where 

Xs = J~(j X(r) dr, 
/ -  t "  

J ] 

Now, as in I, one of the key points for the proof  of the existence of the 
thermodynamic limit is to evaluate the difference between the two generating 
functions corresponding to f21 + f~2 and f~l as follows: 

[log W.I+~(A, t) - log WnI(A, t) I ~< ..(A, t) (18) 

Here, the upper bound ~.(;~, t) is expressed by ~.(A, t) = E~ + E2 + ~3, and 

~ = ]log ~F~I+o~ - log Tr[exp()tX~)]p(t)] 

a2 = ]log Tr[exp(AX1)]p(t) - log Tr[exp(AX~)] U(t)(exp 9F~) U*(t)l 
ca = ]log Tr[exp(AX~)]U(t)(exp ~/g~))U*(t) - log ~'~1] (19) 

where p(t) is determined by the Liouville equation 

i a r t )  = [~( t ) ,  p(t)]; h = 1 (20) 

The formal solution is given by ~9-xl) 

p(,)= exp+{lf~F~(t ' )dt ' )p(O) 

with Kubo's  notation .4 "B = [A, B], or 

o(t) = U(t)p(O)U*(t) (22) 
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U(t) = e x p + { l f i ~ ( t ' ) d t '  } 

=1+  k (23) 

For the details of the ordered exponential exp+ (.-.), see the paper by Kubo. (~2) 
In particular, we have 

U*(t)= exp_{lf]a~'(t ')dt '} 

= 1  + ~=,~ \z/(11" do ftdtl f)x dt= ... f]"-* *( t , ) . . .  af'(tl, (24) 

and 
_ / ' "  

8U(t) 1 U(t) dt'Ut(t') U(t') (25) 
aa 7 Jo 

Equation (25) will be used frequently in this paper. The main difference of 
the present treatment from that in I is the use of U(t) given by (23) instead of 
exp(-itae ~) in evaluating the upper bound %(h, t) in (18). The quantity r is 
rewritten as follows: 

el = N log Tr{exp A(Xl + pX2)}p(t) d/~ (26) 

As shown in I, the following formula holds. 

dea§ fo  f ]  = e <l - s)(a + .mBeS(A + xm ds = e s(a + XmBe(* - s)(a + xB) ds (27) 

It is convenient to define, as in I, the following operation (or mapping) 
P(~..) associated with an operator P: 

P(,.v)Q - e-'<e' +u*'=)O e*(ex +uP2) (28) 

where the operators Px and P2 are defined by 

Pj = f P(r) dr (29) J 
Then, ex is written as 

I ~01 fO 1 ] ~a = A d/, da Tr(X{_s,u)Xz){exp[A(X~ + tzX2)]}p(t) ZZa (30) 



Fluctuation, Relaxation, and Extensivity of Macrovariables 135 

where 

Z^,. = Tr exp[a(X~ +/~X~)]p(t) 

By the use of  the property that 

Tr[(P(_8,a)A). B] = Tr[AP,~..)BI 
we obtain 

(31) 

(32) 

,l = [ h fol d~ foldS fa2 dr(X(r))(1) [ <~ ([A[cl)~2 (33) 

where the average (...)(1) is defined by 

(X)  (1) - Tr Xpl/Tr pl; pl - {exp[A(Xz + ~X2)]}X(8.,)p(t) (34) 

and we have assumed that 

I(X)(~l .< cl (bounded) (35) 

In a similar way, we get 

e2 = ]log Tr(exp AX~)p(t) - log Tr(exp AX0U(t)(exp ~ ' ) U * ( t ) [  

= f f  dt~ff~l~ 

= z~  ~ ds Tr{Ut(t)(exp ~X0U(t)) 

• exp s ( ~  ~ + ~ r ~ g ~ ) ~  exp(1 - s ) ( ~  ~ + ~ ) 1  (36) 

where we have used Eq. (27), and 

Zz = Tr Ut(t)(exp hX1)U(t) exp(~(~ ') + pAffg )) (37) 

Thus, we obtain 

Ifo  ffl "2 = Zg 1 d~ ds Wr .~g) e x p ( . ~  > + / z ~ g  )) exp[~ ' )~)Vt( t )Xl  U(t)] 

(38) 

with the notation (28). Here we define an average (...)(2) by 

<.r = Tr ~'~)p2/Tr P2 
(39) 

P2 --=- exP[.~F~ ~) + / z ~  ~)] exp[g~).~)U*(t)XlU(t)] 
Then, assuming that I(,g~'~)(r))(z) I ~< c~ (finite), we get 
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Finally, ca is evaluated as follows. First note that ca is given by 

ca= If]  dtz ff-~ log Tr(exp )tX~)Uu(t)(ex p ~(l~ U~e(t ) (41) 

where 

U.(t) - exp+ (1/i) { ~ ( t ' )  + ~ ( t ' ) }  dr' (42) 

Consequently, we have 

~a ~< ~3,1 + %,2 (43) 

where 

" ~ =  If[ dtz Tr(exp t X ~ ) [ ~  U.(t)](exp ~ ~  ~ 
(44) 

If'[ d u"*(t)lZ~l ca,2 = d/~ Tr(exp AXl)Uu(t)(exp d~(1 ~ 

and 
Za = Tr(exp ~X1) U.(t)(exp ~ )  Uu*(t ) (45) 

By the help of formula (25), we obtain 

lY; r I r = dtz d r ' .  dr <oW(r, t')> ~*~ ~< tcaf2z (46) 

under the condition that t<~r t')>~a>l ~< ca, where the average <...>~a~ is 
defined by 

<a~'(r, t')>cat = Tr ~ '(r ,  t ')pa/Tr Pa 
t t pa U.(t')(exp ~r ;~X1)U.(t)U. ( t )  

= exp[ Uu(t')~> Uut(t')] exp[2t Uu(t') Uu*(t)X 1Uu(t ) Uut(t')] (47) 

Similarly, r is given by 

r I "a,2 = dt~ dt' dr <oet~ t')> ~ (48) 
' J ~ 2  

where 
<~( r ,  t '))~) = Tr ~ ( r ,  t ')pat/Tr pa* (49) 

Then we get I<~(r,  t ' )>~ I ~< ca. Consequently, we obtain 

%.z <~ tca~2 (50) 

Thus we arrive finally at the inequality 

~(A, t) ~< (IAlc~ + c2 + 2tca)~2 (51) 
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Therefore, Eqs. (15) and (18) with (51) lead to the following inequality: 

[~b,(,~, t) - ~b,_~()t, t)[ ~< 2-~c(t); c(t) = (Acl  + cz + 2tc3)(2bd/a) 
(52) 

Here we have made use of the facts that ~2 = (2bd)L~- ~ + higher terms and 
that ~2. = L,~ a = 2naa a. Repeated application of Eq. (52) yields 

[~b,+m(A, t) - ~b,(h, t)l ~< 2-"c(t) for IAI ~ A (fixed) (53) 

and for any positive integer rn. This is Cauchy's condition of the uniform 
convergence of the series {~b,(~, t)} for t finite (fixed). Hence Theorem 1 holds. 
The limit ~b(1, t) obtained for the above particular sequence of squares is also 
obtained for an arbitrary sequence of squares with edge increasing to infinity 
as in the static proof (13'~4~ of the thermodynamic limit of free energy. 

3. EXTENSIVE PROPERTY IN S T O C H A S T I C  M O D E L S  

In this section we prove the extensivity of the probability distribution 
function P ( X ,  t) of a macrovariable X. The main procedure of the proof is 
much the same as for quantal systems. The conditions of the validity for 
stochastic models are, however, much simplified compared to those of 
quantal systems. That is, the extensivity of a stochastic model holds under the 
condition that the microscopic distribution function P@rj}, t) is "normal"  
in the sense that 

P(.. . ,  - c%. . . ,  t) <~ CAP(..., aj,..., t); aj = + 1 (54) 

for any configuration, where Ca is a constant independent of the system size 
f2. We designate this as P ~ -ft. 

As in I, we start from the microscopic master equation 

@/Ot)P({e3}, t) = F(t)e({aj}, t) (55) 

with the following temporal evolution operator of single Spin flips; P(t) = 
~j  P(j, t) and 

r ( j ,  t ) P @ j } ,  t)  = - rv;(~j, t ) / ' ( . . . ,  ~ , . . . ,  t )  + w j ( - ~ j ,  t ) P (  .... - o s  ..... t)  
(56) 

where Wj(oj, t) denotes the time-dependent transition probability of a spin j. 
Now, we assume that P0 is given by P0 = exp ~,,(o with (2). As in Section 2, 
we divide the system ~ into two parts f21 and f22 to confirm Cauchy's condi- 
tion (53). Accordingly, P(t) and o~(t) are separated, respectively, as 

F(t) = I?l(t) + P2(t) and 9f'(t) = ~ ( t )  + Jg2(t) (57)" 

Then the following theorem holds with the definition 

f2 V.(t)  - exp+ {Fl(s) + t~r2(s)} ds (58) 



138 Masuo Suzuki 

Theorem 2 (stochastic). If P(t') =- V,(t')Po ~ X  ("normal")  for any 
separation of F(t) into two parts Pl(t) and r2(t) and for 0 ~< t' ~< t and 
0 ~</~ ~< 1, then we have 

lim ~ba(a, t) = ~(A, t) (uniformly convergent) (59) 

for - A  ~< A ~< A (A = fixed) and t finite. Therefore, W(A, t) and P(X, t) 
have the extensive property. 

For proof of this theorem, it is sufficient to derive the inequality (18) 
with ~n(A, t) = Ez + E2 + E8 = O(L~-I), where 

El=[log~,(expAX)P(t)--log~,(expAX1)P(t)[ 

,2 = [log Z(exp AX1)P(t) - log ~ (exp hXl)Vx(t)exp&'ffi~ (60) 

,3- [log  (exp AX1)Vl(t)expAe~i>-log~ (exp AX1)V0(,) exp ~ ~  [ 

(i) Since X~ commutes with X2 in the stochastic system, we obtain 

~ = d~ ~ log ~ [exp ;~(Xz + ~X2)]P(t) = h (X2)~ ~' d~ (61) 

and 

(X2)(~ ~) = ~ X2[exp h(X1 + ~X2)]P(t)/~ [exp A(X~ +/~Xz)]P(t) (62) 

where ~ denotes the sum over all configurations. Clearly, we have 

IlX ll (maximum value of X2) (63) 

Therefore, we obtain 
,~ ~< IAI IlX~ll = O(L~-D (64) 

(i) Similarly, since ~ )  commutes with ~r we obtain 

bC I ~z dt~ / ~r (65) 

where the average (...)~2) is defined by 

(~zp~o\(~, = ~ (exp ,,kX1) VI(t){P(O)vT'~))Z~ 1; 

Note that the following lemma holds. 

Lemma 1. If f({ai}) ~< g({aj}) 
<<. V,(t)g f o r t  t> 0 a n d 0  ~</~< 1. 

Z2 = ~ (exp AX1) VI(t)P(O) 
(66)" 

for any configuration, then Vu(t)f 
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This is easily seen, as in I, from the fact that if h /> 0, then Vu(t)h >>. O. 
Note also that IP(0)~"C'gq ~< [og'(~lP(0). Then, applying Lemma 1 to (66), we 
obtain 

(~a~(o\(2)l ~< ~aT'(g)ll and thus ~'~" 2 / t t .  I 

quite in the same way as in I. 
(iii) Finally we evaluate Ea as follows 

ll (gq (67) 

' f~ d log~(exphXl)Vu(t)exp~/t~(l~ 1 

t ! t = dtz dr' ~ (exp AX1)Vu(t)V. (t)r~(t )v.(t ) exp 9ff~) Z~ ~ 

(68) 
where 

Z3 = ~ [exp(AX1)] Vu(t) exp ~ '  

and we have used the formula 

Vu(t ) = Vu(t) dt' Vfl(t')Pz(t')V.(t') 

(69) 

(70) 

which is essentially equivalent to (25). Since ~ m  is an effective initial Hamil- 
tonian of short-range interaction, we have exp ~r ~ .~. Furthermore, we 
assume that 

Pu(t') = V,(t') exp ~ i  ~ e X (71) 

In order to evaluate Ea explicitly, we recall the following lemma proved in I. 

Lemma 2. If f({%})e LAP, then Ir=(t')fl < C~2(t)f, where C~2 is a 
constant dependent on f22, and is given by 

C.~(t) = (C~ + 1)HPa2(t)ll; Hrn2(t)[[ = [ m a x  w~(~k, t')]f~z (72) 
LO ~t. <t J 

with a certain constant C4. 
Applying this lemma to (68), together with (71) and Lemma 1, we obtain. 

,a < I fo l+  f] d t ' ~  (exp hXl)Vu(t)V.'(t ') 'Ca2(t)Vu(t')exp ~f,~o IZgX 

= tCa2(t) = t(C~ + 1)~Paz(t)~ (73) 
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Here it should be noted in applying Lemma 1 to (68) that 

a t  

Vu(t, t') =- Vu(t)Vu*(t' ) = exp+ / {rl(s) + /zF2(s)} ds (74) 
d t '  

and consequently this has the same property as Vu(t) for t /> t'. Thus, 
Lemma 1 is extended to the following: 

Lemma 1'. I f f  ~< g, then Vu(t, t ' ) f  <~ Vu(t, t ')g for t >t t'. 
Thus we arrive finally at the desired inequality 

t) I 111X21[ + II  'll + t(C~ + 1 ) l [ r . 2 ( t ) [ I  = O(Z -O (75) 

Hence Theorem 2 holds, as in Section 2. 
Extensions of the above proof to more general stochastic systems such as 

a two-spin-flip model are straightforward. 

4. C O N C L U D I N G  R E M A R K S  

We have proved the extensive property of the reduced density matrix 
p(x, t) or the probability distribution function P(x, t) of a macrovariable X 
under general conditions on the time-dependent Hamiltonian ~,~ and 
temporal evolution operator F(t). The present results will be useful for 
discussing fluctuations in bulk-contact open systems. 

The generating function formalism introduced in the course of the proof 
is very useful in investigating fluctuation and relaxation of a macrovariable 
for concrete examples. (Such applications are demonstrated in the appendices.) 
In fact, the most probable path y(t) of x = X/f2 and variance ~r(t) are given by 

y(t) = (ar = o and a(t) = (~2~b/~;~2)a =0 (76) 

respectively, for a large f2, as shown in I. 
In Appendix A, we discuss the noninteracting temporal evolution with 

an arbitrary initial distribution. This is instructive in understanding how the 
extensivity arises in nonequilibrium systems. The Lee-Yang circle theorem 
on zeros of partition functions in the complex fugacity plane is extended to a 
dynamical system. That is, zeros of the generating function ~F(A, t) lie on the 
unit circle of the complex z = e a plane under "ferromagnetic" conditions. 
In Appendix B, the extensive property is demonstrated explicitly by solving 
rigorously the linear stochastic chain. An enhancement of fluctuations C2-5~ is 
shown even in this simple model. In Appendix C, the extensive property and 
nonlinear relaxation are discussed in the generalized X Y  model in one 
dimension. It is shown that the nonergodic property appears in this system. 
The relation between the nonlinear critical slowing down and the linear 
critical slowing down is also discussed. 
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APPENDIX A. NONINTERACTING TEMPORAL EVOLUTION 
A N D  ARBITRARY INITIAL DISTRIBUTION 

(i) The simplest quantal system showing the extensive property may be 
the following noninteracting spin system: 

Q L2 

~ = - J  ~ aj x, X = ~ %~, and W(*)= h ~ a, ~ (A.1) 
/ = 1  J = l  j - z  

in which the relevant maerovariable is the total magnetization X and the 
initial state is sustained by the Zeeman field. This system is trivial, but it may 
be instructive for understanding our general theory. The generating function 
q~(~, t) is easily shown from (9) to take the form 

~F(;~, t) = exp[f~b(;~, t)] (exact for any f~) (A.2) 

where 

~b(;~, t) = log{cosh ~ + sinh ~ tanh h cos(2tJ/h)} (A.3) 

The reduced density-matrix p(X, t) is given by (11) with the function ~b(x, t) 
of the form 

~(x, t) = log(a(t) sinh ;~(x, t) + cosh A(x, t)} - xa(x, t) (A.4) 

where a(t) = tanh h cos(2tJ/h) and ~(x, t) is the saddle point determined 
from (13). In our simple system, ~(x, t) is solved explicitly and it is given by 

a(x, t) = tanh-~{[x - a(t)]/[1 - a(t)x]} (A.5) 

From (76), the average value y(t) and variance a(t) are, respectively, given by 

y(t) = a(t) and or(t) = 1 - a2(t) (A.6) 

These oscillate and do not damp, as it should be, because this system is 
nonergodic. 

(ii) The second simple example is a stochastic model ~15-16) with a non- 
interacting temporal evolution operator I' but with an arbitrary initial 
distribution 1"o. The generating function W(,X, t) of  this N-spin system for any 
arbitrary extensive macrovariable X = ~sfJ((%}) is given by 

W(),, t) = (exp(~[~f~.({aj})]~(%-+cr, e-~t))~o (A.7) 

where (Q)o = ~<~j= ~-1~ QPo and [---]~ denotes an irreducible expression of 
[.--], in the sense that it does not contain any redundant part such as %-%- or 
%3 (which should be reduced to 1 or %). After such reductions, we replace the 
variable aj by aye -"t in [f({%.})]~,,, where ~ is the strength of interaction with 
the heat bath (i.e., F%. = -~r j ) .  It should be remarked that an enhancement 
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of fluctuation ~2'3) can occur even in this simplest example for appropriate 
macrovariables and initial distributions. For  example, the variance a(t)  of 
the short-range order E = ~j %%+1 is given by 

%(t) = 1 + (2e -2~ - 3e - ~ )  tanh K (A.8) 
/ 

in one dimension, where P o ~  assumed to be given by P0 = exp(K Y. %%+ 1). 
This variance aE(t) shows ~ peak at t = tv = (2c~)-1 log 3. This is a certain 
kind of enhancement of fluctuation. (2-~ 

In general, the variance au(t) of the magnetization for this noninteracting 
F is given by 

cry(t) = 1 + (Xo - 1)e -2~t (A.9) 

where Xo = N - l ~ , j ( % % ) o ,  while M ( t ) =  M(O)e  -"t. The generating 
function of the magnetization LF~(A, t) is expressed as 

WM(A,t)=(C2--sg"e-"t)N/'<exp{h(X,t)~%}~ 
(A.IO) 1 1 + e-~t tanh )t 

h(A, t) = ~ log 1 - e -~t tanh 

with c = cosh )t and s = sinh )t. From this, we obtain (A.9) with the use of 
(76). The relaxation of magnetization is given by a single exponential decay 
as M ( t )  = M(O)  e x p ( - a t )  and the energy relaxes as E ( t )  = Y.<~,j> <cr~%.>o x 
e x p ( -  2at) .  

(iii) Here we consider an extension of the Lee-Yang theorem to dynamical 
systems. Zeros of the generating function ~FM(A, t) in (A. 10) are easily shown 
to lie on the unit circle of the complex fugacity plane z = e a if ~ o  is effec- 
tively ferromagnetic, because the ordinary static Lee-Yang theorem ~7-2a~ 
yields 

h()t, t )  = iO and thus z 2 = (1 +//3)(1 - i/3) -1 (A.11) 

with/3 = e ~t tan 0. Thus, we have Izl -- 1 for real time. The present results 
will be extended to more realistic interacting systems. 

APPENDIX  B. THE EXTENSIVE PROPERTY A N D  NONLINEAR 
RELAXATION IN THE LINEAR STOCHASTIC  
M O D E L  

It is convenient for studying fluctuations rigorously in a stochastic model" 
to make use of a state vector representation ~z4-zv of the form 

| 

IP(t)) = ~ e({%}, t)l{%}); ]{%)> = ~ I,rj>, (B.1) 
{aj= :I: i} j= 1 
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where 

= (10) for a j = l  and [ % ) j =  (0)  for a j = - I  (B.2) 
I~J)J J 1 J 

In this representation, the master equation of the stochastic system is ex- 
pressed as 

0 
a~ ]e( t ) )  = Wle(t)> or tP(t))  = e*WIP(O)) (B.3) 

It is also convenient to introduce the vacuum state (2~-27) of the form 

{o-y = • 1} 

where p~q is a diagonal operator defined by 

p~,~ = e-axe~Z, Z = Tr  e -axe, ~ = ~r and Wlpo~> =0 
(8.5) 

Then, the average motion of a diagonal operator A ~ is given by 

<A% = (I[A~IP(t)) = (0lA~lff(t)); ]r : py, l/2lP(t ))  (B.6) 

The state vector 14,(t)) is the solution of  the equation 

0 
a~ ~b(t))= W(fl)l~b(t)) ; W(fl) = req"- 1/2w.1/2,. req (8.7) 

NOW the generating function T(A, t) of this stochastic system for a macro- 
variable X is written as 

tF(A, t) = (0](ex p AX)[~b(t)) 

= (0] exp(AX)exp[tW(fi)] exp(f l~  + .r ~ (B.8) 

with Zo = Tr exp oeg (o. This is a basic expression for the generating function 
of the macrovariable X with the initial distribution Oo = exp ~(o .  

As an exactly soluble example, we consider here the nonlinear relaxation 
of energy in a linear stochastic chain whose Hamiltonian is described by 

N 

,.~ - J ~  ~ ~ (B.9) --~ 0"3- O'y+ 1 
j = l  

The initial effective Hamiltonian ~r is assumed to be 9~ '(~) = -f lo ~ .  That is, 
the initial state is in equilibrium at a temperature To (i.e.,/30 = 1/k~To) with 
the same Hamiltonian ~ The relevant energy macrovariable is given by 
X = ~ .  The generating function of this system is rewritten (8) as 

W(A, tz, t) = <OleaxeetW~)e"xelO> x ZZf f  ~; I z =/3 - / 30  (B.10) 
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Here, W(/3) is given by (B.7) with W of the form 

1 N 
W = ~ ~ {[1 + }Y~P(r + oj+l)]~, + [~j~(aY-1 + oj+l) - 1]} (B.11) 

j = l  

where ~, is defined in (B.13). According to Felderhof, (25-27~ the temporal 
evolution operator W~)  is diagonalized ~28~ in the form 

= wq0 ) = + - 1 )  - ( B . 1 2 )  
O<q<~ 

in terms of fermion operators ~q+, ~q, where 

~ = ~(1 - y cos q), ~, = tanh(2J/kBT) (B.13) 

and c~ denotes the strength of interaction with the heat bath. It should be 
remarked that 10> is the vacuum of this representation: ~q]0> = 0. On the 
other hand, the Hamiltonian ~ becomes (2~-27> off-diagonal in this repre- 
sentation as 

= -2J [cos  ~bq(~q+~q + ~_+~_~ - 1) + i sin ~bq(~+~_+~ + ~q~_q)] (B.14) 

where 

ff~ = q + X~, sin Xq = ~(~' sin q - sin 2 ~0 sin 2q)h~ ~; sin 2~ = ~, (B. 15) 

o r  

cos ~ = (cos q - ~ ) ~ "  ~ and sin ~b~ = (1 - ~,~)~Z2(sin q ) ~  ~ (B.16) 

Thus, the generating function of the energy E = ~ is expressed in the form 

W(A,/z, t) = ZZo ~ 1-I f(q, 1% I~, t) (B.17) 
0 < q < ~  

where 

f(q, A,/~, t) = <Ole~g~e~W(a~e~aV~[O> (B.18) 

Therefore, we obtain the following result: 

~b(A, t~, t ) =  limN_~o N-~ l~ ~F = lim~;-.~ N-X{o ~< ~ f(q" A'lz' t )+  log(ZZ~ 1)} 

1 f.~ . [ c o s h / 3 d  
= 2--~ -~  logf(q, ~, i~, t) dq + ,Og~co--0-~--/3--~j (B.19) 

Thus, the generating function takes the following asymptotic form: 

~F(a, tz, t) = C exp[N~(a, Z, t)] (B.20) 

for large N. This is our desired extensivity. It is easy to obtain an explicit 
expression oN<a, t~, t) orf(q,  a, tz, t). From (B.18), (B.12), (B.14), the evalua- 
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t ion o f f ( q ,  A, tL, t) is similar to the calculation of  the free energy in the BCS 
pairing theory. (29~ We introduce the following boson operators:  

bq + = ~_+q~q+ and b~- = ~ _ q  (B.21) 

In the subspace spanned by the states 10, 0) and I-q, q) = b~+l 0, 0), we 
have 

, q + , q + , + q , _ q = 2 b q + b q - = b q ~ + l .  bq~ = (10 
- 1o, o >  

(B.2Z) 

cq = cosh(t?Q, sq = - sinh(tAq) 

. . . . . ~ .  [ C' --  Co8' i8o~' 
exp(aa~) = ~ _ isos' c' + SOS'] 

c' = cosh K^, s' = sinh Ka, Ka = 2JA 

Consequently,  the product  of  the operators appearing in (B.18) is given by 

e~etW~(B)e.aV~= (Aq Bq) (B.27) 
C~ D~ 

where 

D~ = (cq - sq)(c + CoS)(C' + COS') + (cq + sq)so~ss ', etc. (B.28) 

Not ing  that  

we obtain 

f (q,  A, tz, t) = e-~t{e*a,(c + s cos Sq)(c' + s' cos ~bq) + e- '~ss ' sin 2 ~bq} 03.30) 

(B.26) 

It  is convenient  to t ransform these Pauli operators into the following new 
representation:  

bg" = b~ ~ cos ~bq + bq ~ sin ~bq; (b~') 2 = 1 (B.23) 

Thus, the operators appearing in (B. 18) are given by the following matrices: 

e x p , )  = exp(-Kub~')  = cosh K~ - bg' sinh K~ = (c - CoS icso 
\ -icso C+CoSl 

Co = cos ~b a, c = cosh K~ (B.24) 

So = sin ~bq, s = sinh K, ,  K,  = 2J/~ 

exp[tWq(fl)] exp(at) = exp(eqbq) = cq + sqbq~ = (cq + s~ 0 ) 
0 cq - sa (B.25) 
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Fig. 3. Relaxation of the energy y~(t). 

Thus, the extensive proper ty  is confirmed (8) explicitly in the linear stochastic 
chain. The nonlinear relaxation of  the energy is given by 

(0r = _ J  tanhO3j) + Js I" e-2% sin2 ~bq 
y~(t) = (a~a) t=  ~ a=o ~'oo c + s c o s ~ b q d q  (B.31) 

This behaves as shown in Fig. 3. The variance ~E(t) is given by the integral 

[ 1 =~ f e - 2 % s i n 2 ~ \  2 ] a~(t) = 2J  2 1 - - _ _cos ~b~ + s dq (B.32) 
'~Jo L c + s cos C J  

It is easily found that  the variance aE(t ) shows, in general, an enhancement  of  
fluctuations C2-5) as shown in Fig. 4. In particular, we have 

yE(0) = - J  t anh~0J ) ,  yE(m) = y,q = - J  t a n h ~ J )  
(B.33) 

~ ( o )  = kToC~(~o), ~(oo)  = ~oq = krC~(~) 

where C~(fl) denotes the specific heat at the temperature T (= 1/kBfl) and it is 
given by 

C~(fi) = 2J2fl 1 - ~. cos 2 Cq dq = cosh~(~j ) 

As a special case, we consider a limiting situation in which To = 0 and 
T = oo. The variance of  the energy in this limit is given by 

aE(t ) = %q + j2(2e-2~t _ 3 e - ~ t ) ;  %q = j2  (B.35) 

9 T<T~ 

___-, r 

Fig. 4. Time dependence of the variance 
(r~(t), showing an enhancement of fluctua- 
tions. 
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This shows an enhancement of fluctuations before the system approaches 
equilibrium. The result (B.35) is consistent with (A.7) for a noninteracting 
stochastic system. The detailed analyses of the relaxation (B.31) and fluctua- 
tion (B.32) for finite To and T will be reported elsewhere. 

It seems difficult even in the stochastic chain to obtain in a compact form 
the generating function of the magnetization 

WM(A, t) = (01 exp(hM) exp[tW(fi)] exp(,fi,~' + ~r176 1 (B.36) 

because the magnetization cannot be expressed in a bilinear form of fermion 
operators. The most probable path yM(t) = M ( t )  is, however, easily given by 

M ( t )  = M(O)e -"t or Mq(t) = M~(O)e-X~ t (B.37) 

The variance is also easily obtained. For details of fluctuations in the linear 
region, see Refs. 26 and 27. 

APPENDIX C. THE EXTENSIVE PROPERTY IN THE 
GENERALIZED XY MODEL IN ONE D IMENSION 

The generalized X Y  modeF 28) is described by the Hamiltonian ~ = 
a~(Jx, Jy,H), where 

�9 ~ ( J x ,  J~,, H )  

= _ ( ~  ~; ~j .~  + .r~ ~ ~.~)N.~ ... ~.~_~ + . ~ H ~  ~p (C.1) 
/c=l .4=1 

We assume that the initial Hamiltonian ovg(o is given by 

a~,~ = - / ~ ( ] 2 ,  j 0 , / 4 0 )  ( c . 2 )  

Now we are interested in the two macrovariables Xz and X2 of the total spin 
and short-range order: 

N m ,  N 

X~ ~I ,  X~ = (~j ~J+k + ~j ~j+~)~j+l "" ~ j + ~ - i  (C.3) 
J=l = J=l 

The generating function ~FQt,/z, t) of the linear combination of these macro- 
variables, AXz +/zX2, can be calculated exactly by diagonalizing s +/zX~ 
in a well-known nonlinear transformation. ~8~ The results thus diagonalized 
are expressed in terms of fermion operators ~q +, ~Tq as follows: 

2Xl + t~X2 = ~ ~oq(%+% + ~+~/-q - 1 ) -  ~ ~o~Xa (C.4) 
0~q.<~ 0 < q < ~  
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where oJ~ = 2Qt + 2/z cos q). 

Aa = ~ ~ = ~ { a ~ ( ~ + ~  + ~+-dT-~ - 1) - b~(~7+~7~ + + h.c.)} 
O<q.<~  

a~ = tz~H + 2 ( -  1)~(J~ + J~)  cos kq (C.5) 
k = l  

b~ = - ~ ( -  1)u(J~ ~ - J~u) sin kq 
/r 

,kff(" = ~_, oaf'(q"; , ~ o  = _fla~o({jx}..+{jxo},,H_..>. HO) (C.6) 
0 ~ q ~  

with the replacements a~ -+ a~ ~ and b~ --> b~ ~ 
Now the generating function ~F(~,/~, t) is defined by 

~F(~, ~, t) 

= Tr[exp()~X~ + ~X~) exp( -  it2#') exp(~f '(~)) exp(ito~)]/Tr exp . ~ o  (C.7) 

From the expressions (C.4)-(C.6), we obtain the following extensive property : 

~t'(t, ~, t) = C exp[N~(1, ~, t)] for large N ((2.8) 

where 

r ~, t )  = lira N-1 logW = log{f(q, A, t)(2 cosh %~ 

((;.9) 
with ea ~ = [(a~~ z + (b~~ x/z, and 

f (q ,  A,/~, t) = Trca ' _~) exp(it;,~'~) exp(wqXq) e x p ( - i t S )  exp o~f'~ ) ((2.10) 

As in Appendix B, we introduce a new spin representation: 

bq- = %~/_q, b~ + = ~+-~%+, ~7-q  + ~+-~%+ = b~ ~ 
(cA0 

%+% + ~+-~7-~ = 2bq+bo - = bq z + 1 

Then it is sufficient to consider the subspace, spanned by 10, 0) and I-q, q) = 
b~ + 10, 0) as in Appendix B. By the help of these considerations, the product 
of the matrices in (C.10) is calculated to take the form 

e x p ( i t ~ )  exp(o~qX~) e x p ( - i t ~ )  exp(o~<q t)) = (Ae' Bq'~ (C.12) 
\ c j  o . 7  

Here, we have 

A~' = (co + soc2){e%(d + s2cl 2) + e-~',s2s~ ~} 

- 2issosls2(c + iscO sinh oJq 
(CA3) 

Dq' = (co - SoCs){e%sSsl 2 + e-%(c  ~ + s2c1~)} 

+ 2issosls~(c -- iscO sinh co~ 
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where % = (a~ ~ + b~)  ~ and 

c = cos(t%), 

s = sin(t%), 

c~ = cos ~b~ ~ = a~~ ~ 

s~ = sin ~bq ~ 

Therefore,  f (q ,  A, i~, t) is given by 

f (q ,  A, iz, t) = 2 + A~' + D~' 

cl = cos ~bo = a J% 

s z  = sin ~ ,  

Co = cos(t% ~ 

So = sin(t% ~ 

(C.14) 

= 2{I + cosh oJ~ cosh Eq ~ + (sinh ~% sinh ~o) (C.15) 

• [cos2(t%) cos ~bq ~ + sin2(t%) cos(2~bq - ~bq~ 

F r o m  (C.8), the nonl inear  relaxation of  magnetizat ion,  for  example,  is given 
by 

M ( t )  = M(0)  + ~r {cos(2t%) - 1} tanh ~ %0 sin ~bq sin(~b~ - ~bq ~ dq 

(C.16) 

This is an extension o f  a previous result. (31) I t  should be noted that  

lim M ( t )  ~ Meq (nonergodic) (C.17) 

The nonlinear  relaxation of  the energy E and the variances of  E and M can 
be immediately  obtained f rom (C.8). 

Now,  we discuss the relation between the linear critical slowing down 
and nonlinear  critical slowing down. In  Ref. 31, we defined the nonlinear  
relaxation t ime ~_~,z) o f  the macrovar iable  X by 

r ~  '~ = <X>t/<X>o dt oc (T  - To) -a~"a' (C.18) 

while the linear relaxation t ime is defined (a2,a3~ by 

,~ '  = (X(t )X(0))eJ(X2)eq at oc (T  - To) -~''' (C.19) 

In  Ref. 31, we asserted the following: (i) N ",~ ~< A(~; (ii) in general, A(-,0 
A(~ in nonergodic  systems, as shown near  the critical field Hc at T = 0 in the 
linear X Y  model,  in which A(-,z~ = �89 and A~Z) = 1 ; and (iii) A ~"'z) = A~O i rr  

ergodic systems. Quite recently, R~icz ~35> discussed these problems on the 
basis o f  the dynamical  scaling law. ~36,37~ According to his arguments ,  
N ",z~ = A ~z~ --/3, where/3 denotes the critical exponent  of  the order  pa ramete r  
X in equilibrium. Our  results (i) and (ii) in Ref. 31 are consistent with the 
relation obtained by R~icz, but  the conjecture (iii) holds only when 13 = 0. 
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Our conjecture (iii) has come from the simple argument that in ergodic 
systems the differences in the initial (or intermediate) stages of the relaxation 
are expected not to affect the divergence of the relaxation, and that anomalous 
(or critical) fluctuations will appear dominant in (or very close to) equilibrium, 
which will be attained by the final stage of the relaxation. In order to reconcile 
our arguments with the relation obtained by Rficz, we have to make the 
following modifications: The boundary between the nonlinear (initial or 
intermediate) stage and the linear (or final) stage becomes larger and larger 
as the system approaches the critical point To, and the deviation of the order 
parameter X from the equilibrium value at the boundary point may be 
proportional to ( T -  To) ~. Thus, the anomaly appearing in the final stage 
may be proportional to (T  - T~)Sr t'~ from our definition of the nonlinear 
relaxation (C. 18). Then, if we assume that the contribution from the nonlinear 
stage is no more divergent than (T - T~)ar <z), we obtain the relation A <~,') = 
A <~) - ft. This may be the simplest interpretation of the scaling derivation by 
R~cz. 
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